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ABSTRACT

This report presents two methods for the estimation of a periodic signal
in additive noise. Both methods assume that only a finite time sample of the
signal plus noise is available for processing. The estimate of the signal is
chosen to minimize the mean square error between the estimate and the sample
of signal plus noise. This is also a maximum likelihood estimate if the noise
is white and Gaussian.

The first method is frequency domain analysis. Estimates for the
period of the signal and the complex amplitudes of its harmonics are derived.

The second method is time domain analysis. Estimates for the period
of the signal and for the waveform of one period are derived.

Under the assumption of white noise and large signal-to-noise ratio,
formulas for the expected values and variances of the period estimates are
derived. The estimates for the period are found to be the same by both methods.
The estimate is unbiased and has a variance inversely proportional to the
signal-to-noise ratio, and inversely proportional to the cube of the number of
periods in the given sample. The expected values of the estimates of the wave-
form itself are derived, and the estimates are found to be biased.
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THE ESTIMATION OF PERIODIC SIGNALS IN NOISE

T. G. Kincaid* and H. J. Scudder, III

I. INTRODUCTION

In this report we conside?" the problem of estimating a periodic signal
in additive noise. Although this iij a special application of the established
theory of parameter estimation, (1, 2) periodic signals deserve a detailed treat-
ment because of their frequent occurrence. For example, the results of this
study are useful in the analysis of sounds produced by rotating machinery. In
this application, good signal estimates can be used for source identification or
malfunction diagnosis.

We shall assume that a finite time sample o- the signal plus noise is
available for inspection. We shall show two methods of forming the estimate
of the periodic signal which minimizes the mean square error between this
estimate and the given time sample of signal plus noise. (It is well known that
the minimum mean square error estimator is also a maximum likelihood esti-
mator if the noise is white and Gaussian. ) The first method uses a frequency
domain approach, while the second method works in the time domain.

In the frequency domain method, the first step is to estimate the period
by summing the power spectrum of the data at harmonics of a sequence of trial
fundamental frequencies. The period of the fundamental which gives the largest
sum is the estimate. The Fourier coefficients of desired waveform are then
estimated from the values of the Fourier transform of the data at harmonics of
the estimated fundamental.

In the time domain method, the period and the waveforrn are estimated
simultaneously. The technique is simply to choose a trial period P, divide the
data into P length sections, and average the sections. The trial period which
produces the average waveform with the largest energy is the estimate of the
time period, and the average waveform is the estimate of the true waveform.

tUnder the assumption of white noise and large signal-to-noise ratio,
formulas for appropriate statistics of the estimates are deived for both methods.
The mean and variance of the period e-timates are found to be the same by both
methods. The mean is found to be unbiased. The var::ice is found to be inversely
proportional to the signal-to-noise ratio and inversely proportional to the cube
of the number of periods in the data sample. Formulas for the mean of the
Fourier coefficients are derived for the frequency domain estimates, and it is
found that these estimates are biased. In the time domain approach, it is
necessary to assume a noise distribution to compute the mean of the waveform
estimate. On the assumption of Gaussian noise, this estimate is shown to be

*General Electric Company, Heavy Military Electronics Department, Syracuse,
New York.

~-1-



biased.

In this report tk,- following notation will be used.

? (t) denotes a function aefined on the interval -- <t<, and is a theoretical
ideal,

f(t) denotes a function which is equal to T(t) on a finite interval T, and

zero elsewhere, and is the real signal we must work with.

0 for lxl> 1 /2

rect(x) = 1/& for lxi = 1/2

! for Ixl<1/2

si Lx for xJ0
Tux

sinc(x) =
1 for x=O

(rect and sinc are a Fourier transform pair);

6(t) denotes the Dirac delta function;

{0frt<O and t>x

gx(t) = for 0t< ,x the gate function;

* between functions denotes convolution;

* as a superscript denotes complex conjugation;

E is an expectation (ensemble averaging) operator.

In general, where small letters are used for time functions, the
corresponding capitals are used for thleir Fourier transforms.

Formally, we initiate our analysis with the following assumptions:

(i) Wi{() = Z(t) + i(t) has bandwidth B Hz;
1.(ii) xo(t) is periodic with period P 0>>B, i. e., many harmonics;

(iii) ' (t) is a sample function of a zero mean wide sense stationary
random process with covariance function R(t-s) and Power
Spectrum P(f);

(iv) For band-limited white noise, R(t-s) a 2 sinc(2Bt) and P(f)
aY22rec fI

(v) 0(t) =n w°(t-nP°) (see Ref. 3)
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where wo(t) = 0; for t<O, t :Po.

(vi) JPC wo(t)dt>>a
0

i. e., large signal-to-noise ratio.

(vii) z(t) is known on an interval of length T>>P0
i. e., many periods.

II. THE FREQUENCY DOMAIN APPROACH

In the frequency domain approach we begin by characterizing the un-
known periodic waveform Z0(t) as a Fourier series. The optimization procedure
then yields estimators of the period P 0 and Fourier coefficients cok Of xo(t).

A. The Estimates of the Period and Fourier Coefficients

Any periodic signal x(t) can be written as a Fourier series as follows

j2rrkt/PSck e . (
/-'k

As our estimate of 0 (t) , we seek the particular periodic signal X(t) = R(t) which
minimizes the mean square error between ~(t) and the observed data _'(t) on the
interval -T/2 < t _< T/2. That error is given by

1 fT/2 Zt) 1

L f-T2 t) - '(t)] 2 dt . (2)

In Appendix A it is shown that the estimates of the perioa P and the Fourier
coefficients 8k of X(t) are determined as follows.

First compute Z(f), the Fourier transform of z(t). Then P is the value
of P which maximizes the expression

T KV (P) = ;F Z I Z (k /p)12  (3)

k=1

where K is tho total number of harmonics that can be accommodated by the
bandwidth of z(t). The Fourier coefficient estimates k are the values of ck
given by

ck = ak + J Ak (4)
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where
1

ak = Zr (k/P) (5)
1 zi (6)

bk = Zi (k/P)(6

Zr(f) and Zi(f) are, respectively, the real and imaginary parts of Z(f). The
estimate i(t) of the unknown waveform can then be generated by the relation

A(t) =. CkkeJ2n~kt/P (7)

k

These estimates are independent of the noise covariance R(t-s).

The estimates are intuitively what we would expect. The period is
estimated by summing the values of the power spectrum of z(t) at the harmonics
of the fundamental frequency 1/P. When plotted as a function of P, one would
expect this sum to be greatest when P is close to the true period. The Fourier
coefficients of x0(t) are then just l/T the values of the Fourier transform at
harmonics of the estimated fundamental frequency.

B. The Resolution of the Period Estimate

In practice, V(P) cannot be tested for a maximum at every value of P.
Usually P0 is known approximately (from auto-correlation or power spectrum
data), so that a range of values of P to be tested can be established. In order
to reduce the computing time, it is desirable to test as few values of P as
necessary within that range. How far apart can we choose the test values of P
without danger of missing the maximum of V(P)? To answer this question we
need to know the behavior of V(P) in the vicinity of the maximum.

Since the Fourier transform is a linear operation, the assumption of
a large signal-to-noise ratio carries over into the frequency domain. Thus
the gross behavior of V(P) in the vicinity of the maximum will be dominated by
the signal, and we can study that behavior adequately by considering the ideal
case in which there is no noise. In Appendix B the noise free behavior of V(P)
is studied in a region AP about P 0 . For h<<P0 it is shown that

K

V(Po + h) -= 1cok, 2 sinc2  (8)
k=l0

Equation (8) shows that in the vicinity of P0 the noise-free V(P) is a weighted
sum of squared sinc functions, centered on P 0 . The widths of the main lobes
of the sinc functions are inversely proportional to k, each lobe going to zero at
h =P0/kT. The "roll off" of V(P) in the immediate vicinity of P0 is controlled
by the narrowest of these squared sinc functions. This is the term in Eq. (8)
for which k=K. Thus, in order not to miss the maximum, V(P) should be
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sampled at intervals not larger than

AP =(9)
KT

We shall call the quantity AP given by Eq. (9) the resolution of the period
estimator.

Since K is the total number of harmonics in %(t), it is appropriate to
define the bandwidth B0 of i0(t) to be K/P 0 . Then Eq. (9) can be written

AP = (10)
B0T

Equation (10) is satisfying in its simplicity. It says that the resolution
of the period estimator is equal to the true period divided by an appropriately
defined time bandwidth product. The resolution does not depend upon the detailed
structure of the periodic waveform.

C. The Expectation and Variance of the Period Estimate

Because of the noise, we cannot expect the maximum of V(P) to lie
exactly at P 0. As a measure of how close P is likely to come to P0 , we shall
compute the expectation and the variance of the random variable P. We proceed
as follows. (4)

V(P) is a well-behaved function of P. Thus we can expand V(P) in a
Taylor series about the true period P 0.

V(P) = V(P 0 + h) = V(P 0 ) + V'(P 0 ) h + V"(P 0 ) -i2  (11)

We shall only investigate the region h << P0 , so we can neglect terms of higher
than second order in h. The maximum of V(P) may be found by taking the
derivative of V(P) and equating it to zero.

V'(P) = 0 = V(Po) + V"(P 0) h . (12)

Solving Eq. (12) for h, we find that to a first approximation

V'(PO)P0 - Vl IWO) • 13)

In Appendix C it is shown that the expectation of P as given by Eq. (13) is

EP= Po (14)

i. e., the estimate is unbiased.
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It is also shown in Appendix C that the variance of P as given by Eq.
(13) is

I o__3

Var P 2 o j-, 3 E' 1 (15)

where B2
w is the second moment of the spectrum of wo(t), defined by Eq. (C25),

and Ew is the energy of wo(t), defined by Eq. (C26). Equation (15) shows that
the variance of P decreases as the inverse cube of the length of the data sample
T, and that it decreases as the inverse of the signal-to-noise ratio E w / a .

D. The Expectations of the Fourier Coefficient Estimates

The estimates of the complex Fourier coefficients of the oignal are,
by Eqs. (4), (5), and (6)

1 Xo

T k o k o 2 " p

Thus

1 ,X k k2 2TT2 T2 k (P2PO) 2
E C X0  E +.. +

k T P4 13 PO 2 0-

1 0k 2  !,2 2 a

21
TO POT BBw Ew

We see that the estimates of the Fourier coefficients are biased, but that the
bias approaches 0 as T--, and decreases as the signal-to-nise ratio increases.

III. THE TIME DOMAIN APPROACH

We shall assume in this analysis that '~(t), the periodic signal plus
noise, is known on an interval 0.<t<T. Let gT(t) be the gate function defined irn
the Introduction. Then

z (t) = 'g(t) gT (t)

is the known signal, and

xo(t) ot) -T(t)
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is the true periodic waveform obscured by noise

no(t) = io(t) gT(t)

on this interval. In this approach we shall find an estimate w^(t) of wo(t), the
waveform of one period of ' (t); and we shall find an estimate P of P 0, the period
of 30(t). These two estimates give an estimate i(t) of xO(t). We shall choose
as our estimate V(t) the particular x(t) which minimizes the mean square error

L= f [z(t) - x(t)]2 dt (17)

We shall also determine the mean and variance of P, and the mean of WR(t) under
the assumption of Gaussian noise.

A. The Estimate of the Waveform for a Fixed Period

In this section we assume a fixed period P and find a periodic waveform
which minimizes L. To simplify the analysis we shall minimize L over a section
of data NP long, rather than T. The integer N is chosen so that the interval
NP is as large as possible i. e., NP 4 T < (N+I)P. Thus we shall actually find
the periodic waveform X^p(t) which minimizes

1fNP

L = 1-- [z(t) - x(t)]2  dt (18)

Let -Cvp(t) be one period of )?p(t). In Appendix D it is shown that

N-I
Mp(t) z(t + nP) gp(t); NP T < (N + 1) P (19)

n=0

This equation says that 'p(t) is the average of N successive P length sections
of z(t). This result is intuitively what one would expect. As successive P
length intervals are averaged the periodic component remains constant while
the noise tends to average to zero.

It is of interest to examine the error in the estimate 'vp(t) caused by
restricting the data to a duration NP. It is shown in Appendix D that the dif-
ference between vp(t) given by Eq. (19) and the estimate w (t) which minimizes
L given by Eq. (17) is

W -(t 'p(t) = N [z(t + NP) - wp(t)] 0 t < (T - NP)
{0l I (20)

0 ;(T - NP) t<T
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This error is the difference between averaging the left over "tail" of the data
into the estimate. Since the amplitude of error is inversely proportional to
N+I, our introductory assumption that T >> P makes this error small. By
neglecting this error we not only simplify the analysis but eliminate an untidy
discontinuity in W.p(t) at t=T-NP.

B. The Estimate of the Period

Now that we have learned how to form WRp(t) for an arbitrary P, we
shall find an estimate P for the true period P 0. By our stated criterion, we
require P to be that P which minimizes Lp as given by Eq. (18). It appears
impossible to get any satisfaction by setting the derivative of Lp with respect
to P equal to zero. The P is tied up inside the x(t) in an unknown manner and
cannot be brought out. The best technique appears to be brutu force computation
of L as a function of P, and to choose the P which minimizes L as P.

However, it is not necessary to actually go through the computation of
Lp for each P in order to minimize Lp. It is sufficient to compute the energy
of the estimate W^p(t) for each P. Then the P for which this energy is a maximum
is the estimate P of the true period P 0.

To show this, we first define the error signal estimate

ep(t) = z(t) - x^p(t) .(21)

In Appendix E it is shown that p(t) is orthogonal to p(t), viz.,

NP

f0 NP(t) ep(t) dt = 0 (22)

Now, our objective was to choose P to minimize the mean square error signal,
Lp.

.1 NP
Lp = J [z(t) - -p(t)]2 dt

s 2t stNP rNP
N _ j z(t)dt - 2 [Xp(t) + ep(t)] Xp(t) dt + 2p(t) dt
NP 0 fN

z 2 7 z2(t) dt - fN (t) dt . (23)
0

Since the first term is very nearly a constant for a small range of P, Lp will
be a minimum when the second term is a maximum. (5) Thus P is the value of
P which maximizes the exipression
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0N P  P

V(P) X(t) dt = P Vp(t) dt (24)
00

The choice of notation is deliberate. In Appendix F it is shown that Eqs. (24)
and (3) are equivalent definitions of V(P).

Since the estimator of the period is the same for both the time and
frequency domain approaches, the resolution of the period estimator is given
by Eq. (9) cr Eq. (10). Similarly, the expectation and variance of the estimate
are given by Eqs. (14) and (15), respectively.

C. The Expected Value of the Waveform Estimate

In this section we shall fird the expected value of 4(t), the estimate of
the waveform of one period. Unfcrtunately, it does not seem possible to do this
without assuming a probability distribution for the noise. Under the assumption
of a Gaussi~n distribution, it is shown in Appendix G that

Ew(t) = x(t + nPo) s(t); t> 0
E w1)- 25)

whr 0 ;t<0
where

s(t) = 1 - erf (t-PO)

and erf(x) is the error function, a 2 is the variance of P. The function s(t) is
plotted in Fig. 1. The function s(tyis a sort of "soft gate, " which approaches
the gate function gp (t) as the noise variance a2 approaches zero. This "soft-
ness" of the gate reflects the uncertainty in the period of i(t).

SCI) P/ O:D

p/Po :10

Fig. 1 The expectation
0"p/p0_: I of the gate function for

various ratios of period
variance to true period.

0 t/Po
0 2
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IV. CONCLUSION

Two methods of finding the least mean square estimate of a periodic
function in noise have been derived. These have been labeled the frequency
domain and time domain methods. Under appropriate assumptions about the
noise, formulas for the expectation and variance of the period estimate, and the
expectation of the waveform estimates have been found. The variances of the
waveform estimates were not found.

Of the two methods, the authors have found the time domain method
more satisfactory if it is not necessary to compute the Fourier transform for
other reasons. If n data waveform samples are available, and it is desired to
search m periods for a maximum, then the time required is proportional to inn.
The time domain method has the additional feature that the estimates can be
made in one pass through the data. This is important if the data are stored on
tape, or some other slow memory.

When the Fourier transform of the data has to be computed anyway for
reasons other than waveform egtimation, the frequency domain method is
advantageous. Taking the Fourier transform of n data points requires a time
proportional to n log n, assuming the fast Fourier transform is used. Then,
once the power spectrum is formed, it can be searched exhaustively for evidence
of periodicities. This search requires mh operations, where h is the average
number ol harmonics summed on each period tested. This is essentially a
two-pass system. On the first pass the data are Fourier transformed, and on
the second pass the power spectrum is searched.

It is worth noting that the period estimator also serves as a suboptimal
detector of periodic waveforms. When there are a large number of strong
harmonics, it is somewhat more sensitive than a spectrogram, which does not
sum the harmonics. The optimum tetector takes advantage of the waveform
estimate in an estimator-correlator configuration. This will be shown by the
authors in a forthcoming report.
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APPENDIX A

We wish to verify that P is the value of P which maximizes V(P) given
by Eq. (3), and that Ak is the value of ck given by Eq. (4) of the main text.

From Eqs. (1) and (2) we have that

L= T/ z2(t)-2z(t ck e +J-2"ktP j21-(k+t/Pd

(Al)
Thus,

L T/2 CP 1 +sinc (k+' T /P!
T L -T/2 Lk

2 rT/ 2  j2Trkt/P
2 k f-T/2 z(t) e dt . (A2)

If we define
fT/2 -i2T kt/P

Z(k/P) = T/2 z(t) e - dt, (A3)

the Fourier transform of the input z(t) at frequency k/P, and we use the
assumption T>>P, then

L/ z2 (t)dt + Ick 2 - 2 c Z*(k/P) (A4)
T -T/2 L Itcd T k k

since only the diagonal terms of the double sum make major contributions.
Le' ck = ak + jbk, and note that bk = b-k, ak = a-k.

Then

L - T/2 z2(t)dt - ka2 + b'- 2 [ak Zrk/P)-bkZi(k/P)]

Minimizing with respect to the ak and bk yields
Zr Z.

ak = -Z-(k/P) bk = (k/P) (A5)

Substituting, we find

T I T/2 Z2(t)dt + 1\. ,Z(k/ P), 1 2 iZ(k!P) 12

T - -T/2 T Z k- k

I -IIk



or

'(J/2ztdt ~ Z'k /)1 (A6) .
T/2

Since the first term on the right of Eq. (A6) is a constant, L is
minimized when the second term on the right is maximized. Since z(t) has some
finite practical bandwidth, it is n-at necessary to sum over all k, but rather to
some upper limit K. Thus the value of P which maximizes V(P) is given by
Eq. (3). Equations (A5) give the values of ak and bk which minimize L for any
choice of P. Thus L is minimized with respect to both P and ck when ck = Ck,
as given by Eq. (4).
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APPENDIX B

We wish to verify that the behavior of V(P, in the vicinity of the maxi-
mum : given by Eq. (8 in the main text.

Since we are assuming the ideal case of no noise, z() = xo(t). The
signal is available between -T/2 and T/2, so

xo(t) = rect (TL) Z con ej2Trnt/Po (Bl)
n

The Fourier transform of z(t) is

Z(f) = T Z con sincTIf -. - (B2)
n0

Substituting Eq. (B2) into Eq. (3) for V(P) gives

K 1 k : i n~
V(P) = Z m CZ m Con sincT p P-i s~ncT (p P0 (B3)

k=I m En

If we set P = P0 + h and just consider the region where h << Po thlen Eq.

(B3) can be written

K 
hV(P + h) = 7 C~ihl C0n sinc0 k-m- sinc!-.o k-n- L

k=1l m EnPOP p0O

(B4)

For T/Po >> 1 only the terms for which m = k and n = k will contribute
significantly to the sum on k. Setting the terms for which m, n J k equal to
zero, Eq. (B4) becorles Eq. (8).
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APPENDIX C

thetheWe wish to verify that the expectation of P is given by Eq. (14). and
that tevariance is given by Eq. (15). Since the expression for V(P) involves

teFourier transform Z(f) of z(t), it is a necessary preliminary to investigate
teZ f).

From assumption (i) of the Introduction,

Z (f) = X0 (f) + N (f) (Cl)

where X0 (f) and N(f) are the Fourier transforms of x0(t) and n(t), respectively.
For the transform of the signal alone we have

XO(f = J- cc x(t) rect(t/T) e jftdt

= NO[Ot* 6tnj ettT j2rrft
L. En

= [wO~f) - L 6 (f- -L)] *TsincTf
n A

TZ W0(!) sincTtf-' (C2)
n

We now consider the behavior of the noise process N(f), which is a
complex random variable for each f. Its mean is

EN(f) = E n~)e,2~tdt T/2 E?(t) e -j2fft = 0 * (C3)

The average noise energy density is given by E I N(f) 12 , and is determined as
follows:

E IN(f) 12 = E W(t) rect(t/T) e j 2Tft dt]2

= E C0Mns)rect(t/T) rect(s/T) e -j2rrf(t-s) dd

=fT/2 T/2 R~-)e-j2rf(t-s) dts(CO)
-T/2 f-T/2
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For band-limited white noise

EIN(f) 2 = f Jrect(t/T) rect(s/T)o2 sinc[2B(t-s)] e-j2 f( - ) dtds

= .2 rM ds rect(s/T) ej 2 r f - [sxnc(2Bs)*rect(s/T) e + j 2
*

f s  (C5)

Taking the Fourier transform of the convolution, and integrating over s first,
we get

EIN(f)12 = 2!B J'D sinc2 T(f-g) rect(24) dg . (C6)

A plot of 1/T E I N(f) 2 the average power density of the time limited noise, is
shown in Fig. C-1 for several different BT products. Note that as BT-' - this
function approaches the "rect, N and for BT > 10 a Urect" is a good approxima-
tion to the actual power density. This can be seen directly from Eq. (C6) by
noting that compared to the Orect" function the squared wsinc" function is
becoming very narrow, i. e. , approaching an impulse as BT- -. Since this
"impulse" has area I/T, we can use the approximation

EIN(f) 1 = 2 rec- . (C7)

With these preliminaries taken care of, we can now turn Lo the verification of
Eqs. (14) and (15).

29 OT1a 10

T- 5

B U 9

Fig. C-I Average power density of band-limited
white noise for various BT products.
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From Eqs. (12) and (13) we note that VI(Po) and V"(Po) are needed.

kk (C8)

2Re[X I--)NI k

For large signal-to-noise ratios, the last term is much larger t!i.n the middle,
and we will drop the middle term. Since P 0 is the true period, I (f) 12 will
have a maximum at each frequency k/P 0 , so the first term is zero. We are
left with

V (P°) =" P2Re[X(k/P°)N(k/P°)] .(C9)

k

Also, for large signal-to-noise ratios, we may neglect the contribution due
to the noise, compared with that of the signal in calculating

P0

k P

We work on V'(P) first. Let

A(f) = 2Re[X(f)N(f)] =X'-(f)N(f) + N*(f)X(f) (Cll)

so

d
df A(f) = A'(f) = X*(f)N'(f) + X'fNf

+ X(f)N*'(f) + X'(f)N*(f) (C12)

Now both the real and imaginary parts of X(f) are at a maximum at the
frequencies k/Po, so X'(k/P 0 ) = 0 and

A'(k/Po) X*(k/Po)N'(k/Po) + X(k/Po)N* (k/Po)

V'(PO) d A(k/Po)= -p' A (k/Po) (C13)
k d Ak k 0

A (f) is a random variable, linearly related to NI(f)

N(f) = c rect(t/T)-n(t) e - j21 ft dt

-16-



soI
N I(f) =frect(t/Tiin(t) (-j2Tnt) e -j2nft dt

Thus

EN I(f) £ rect(t/T)E-n(t) (-j2Trt) e j2Tlft dt = 0

Hence EV (Po) =0 (C14)

Since V"(Po) as given by Eq. (CIO) is not a random variable, Eq. (C14) shows
that the expectation of the second term on the right of Eq. (13) is zero. This
verifies Eq. (14).

Turning now to the variance of P, we see from Eq. (13) that it depends
upon

Var V'(Po) = E[V'(p 0 )]2 k -t [A, EA( k 1A'11-fl ] 15
kL t'- 0 Pj P

Now

E[A'(f)A'(g)] = X0*(f)X*(g)E[N'(f)N'(g)] + X0(f) XK0 (g)E(N'*(f)N'*(g)]I + ~X*(f)Xo(g)E[N'(f)N*(g)] + Xo(f)X*(g)E[N '*(f)N'(g)j .(C16)

We will evaluat-e one of these terms

E[N'(f)N'(g)] =E '~ rect(t/T) (-j2Trrti(t) e - 2 Trft dt.

j00rect(s/T)(-j2Trs)?f(s) e- ~g ds

-jcnt (CDs 3j2T(ft+gs)
j~ J(-2t)(jT rent(t/T) rect(s/T)R(t-s) e dtds

-. C -j, j-'t~rc~/T dt.- J0(' (-j2Ts)rect(s/T) e j2 'gs R(t-s)ds

-0 ~ -j2rrt)rect(t/T) e- 2 1rrft it * J" T 2 Sinc'T(h+g)P(h) ej2 Th ht

QT jTsinc'T(h+g)P(h)dh. J' (-j2Trt)rect(t/T) ej 2  f cit

-0 Tf T2sinc'T(h+g) * T 2 sincIT(h-f)P(h)dh

-17-



Substituting for P(h) from assumption (iv) in the Intrcduction,

2 3
2

E[N (f)N (g)J - T3 sinc"T(g+f) rect(g/2B) rect(f/2B) (C17)

because the sinc function behaves similar to a 6 function for large BT. Since
the above is real, E[N*(f)N*(g)] = E[N'(f)N'(g)]. In a similar manner,

*1 2

E[N'(f)N*'(g)] = E[N*'(f)N'(g)] a 2- T3sinc"T(f-g) rect(g/2B) rect(f/2B)
2B

(C18)
Thus

E[A'(f)A'(g)] -t X(f)X ,(g) + Xo(f)Xo(g)] sinc"T(f+g)

+ [Xo(f)X~o(g) + X*(f)Xo(g)] sinc"T(f-g)j

2" rect(f/2B) rect(g/2B) .(C19)2TB

For f=g,

a2T 3

+ 2Re[X6(f)- sinc"(2Tf) rect(f/2B) (C20)

For f = -g we get the same expression, so

Var V'(P) a 2  r21Xo 12 +
Ik BPoIPo PO 2B 3

2Re x2 '(2T3 .ic 2-j
+ 7 k t E A  ,

Ikh<BPo it- 0 PO

IkI / It

where we have summed over both diagonals separately. We may neglect the
last two sets of terms, in comparison with the first since they are down by a
factor of at least P 0/T. Thus

I 2rT T' G2 2 k2I(~2
Var V(P) T3 B) I<B kXo]' (C21)
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The denominator of the second term on the right of Eq. (13) is

V"(PO) P k Ix o

which can be shown to be

IXO 12, k * 2T 2r Ik_2

O(P) k l k ' 3 Xo

Thus the variance of the estimator of the period P is

Var 1P 12 [a 1 2

Var"(Po) J Var V'(Po)

2rn-2 T3 a 2  k21o~
3 B o kk<BP O 12

.4 VIrBP k2 "Xo o0

L
-I k' 11 <BE

4 2T TT k2I XO (-0 12 (C23)

lkkBPNowD 20p

Now X0-L-)12 = (T 2 /p2) IW 0(k/P 0 )1 2 and since

! (k2/P2) IWo(k/Po) 12 -- 12 lWo(f) 1 df (C24)P0 kI<BP

Note that the integral is the second moment of the power spectrum of
w(t) about f-0. We could appropriately define the bandwidth Bw of w(t) by the
positive square root of

B = 1 B ff2l W(f)l 2 df (C25)w Ew JB

where

W - W(f) 12 df fP w2(t) dt (C26)

Then the integral on the right of Eq. (C24) is B2 Ew . Substituting this result
back into Eq. (C23) gives Eq. (1 5).
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APPENDIX D

We shall verify Eqs. (19) and (20). We shall first verify Eq. (19) by
finding the periodic waveform lp(t) which minimizes Lp given by Eq. (18). Let

(N-1)P
Xp(t) = Z wp(t-nP)

m=0

where wp(t) = 0; t<0, t >.P

Now let i(t) be a function like wp(t)

i.e., T(t) = 0;t<0, t>P

Then iet

Wp(t) = 'Vp(t) + CII(t)

where c is a real variable. Since ^ Fy(t) minimizes Lp, it is necessary that

N .2

Lp K 1 JNP z(t) - T 1 Vp(t-nP) - eTI(t-nP) dt

be stationary with respect to an incremental change in - when e = 0. Thus

I Lp (C
0=I

2 6 [E =O

1 P [ N N
J1 z(t) - Z ;Vp(t-mP)n Z n(t-np) dt

Now if we multiply out the integrand and use the fact that w.p(t-mP) and i,(t-nP)
are in disjoint P length intervals when m/n, the right-hand side becomes

4N N
R-'P" z(t)r,(t-nP) - Cvp(t-nP) n(t-nP) dtn=0 n=0

1 N NP
NP J [z(t) - vp(t-nP] n(t-nP) dt

n=0

Now make the substitution of variables

s = t-nP
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Then the integral becomes

N!

1 N NP-nP
" 1 nP [z(s+nP)- Vp(s)] n(s)ds

Since T(s) is zero except in the interval O.< s < P, this expression can be
written

N-1

NP n JO [z(s4nP)-v'p(s)] ri(s)ds
n= 0

Taking the summation back inside the first integral, and making use
of the gate function notation, the expression becomes

z(t+nP) gp(t) - N~p(t) n(t) dtNPn=0

clear that if this expression is to be zero for all possible r,(t), then it is required
that

1 N-1Vp (t) = !R L z (t+nP) 9P t)

n= 0

Or, stated in another form

4 iN-1
wN e-1 z(t+nP) ;0 < t < P (Dl)

n=0

which is Eq. (19). This is indeed a minimum since

'P (C )>0 
for n(t) $ 0

In order to verify Eq. (20) it is necessary to first repeat the above
minimization process over the data intervals T, rather than NP. The result is

N
N, 0 (D2)P

wV P(t) nO(2
IN-1

N T " z(t+nP) ; 0 <t <P

n= 0
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This equation shows that .rp(t) differs from wp(t) only in that the "left-over"
portion of z(t) between NP and 'r has been averaged in also. The error between
the two estimates is given by

-1 N 1 N-I
z z(t-inP) - z(t+nP) ;,< Ot <(T-NP)

n=0 n= 0

_ N
z z(t+NP) + -+ N z(t+nP) 0 .t < (T-NP)

1r 0

1 Lr z(t+NP) - 1-N t<(-P
N+l I LZ z(t+nP)] .t<(-P

n= (

1 ~ [z(t+NP) - WrP(t)] 0 Ot <(T-NP)

and zero elsewhere. This is Eq. (20).
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APPENDIX E

Equation (22) is to be verified. First we note that

NP Tfo ip(t) ep(t)dt = j0  xp(t) [z(t) - Xp(t)] dt

=rNP xp(t)z(t)dt - NP0I' (t) dt (El)

Second, Xp(t) can be expanded as follows:

N-I
Xp(t) = " Wvp(t-mP)

m=0

1 N-i N-iZ Z. zft+(n-m)P] gp(t-mP) (E2)

m=0 n=O

Now the two terms on the right of Eq. (El) will be shown to cancel. Expanding
the first of these with the aid of Eq. (E2) gives

NP 1  N-I N-I NPSN z(t)xp(t) dt = R Z J_ z(t)z[t+(n-m)P] gp(t-mP) dt
m=0 n=0

N-1 N-1 
= =

N- N- mP+P z(t)z[t+(n-m)P] dt (M)

m=0 n=0

The second term on the right of Eq. (E2) gives

JNP 4p(t)dt = N P V,(t) dt

= N 0 z(t+nP) gP(t dt

- N-i N-iN N-1 z(t+mP) z(t+nP) dt
m=O n=0

Substituting s = t+mP
N-i N-i

N1 N N- imP+ P  z(s)z[s+(n-m)P] ds . (E4)
m=0 n=0

Since the right side of Eq. (E3) is identical to the right side of Eq. (E4), therefore

the right side of Eq. (El) is zero. Thus, Eq. (22) is verified.
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APPENDIX F

We wish to show that Eqs. (24) and (3) are equivalent definitions of
V(P). From Eq. (24),

v(P)=rNP M6= i Xp(f)1' d

The second equality is from the Parseval theorem. Now by definition

N-1
ip(t) = }" 'Vp(t-nP)

n=0

= gNp(t)[wp(t)* 6(t-nP)]
n

= gNplt) N 6n

Taking the Fourier transform of both sides gives

4~(f) =NP sinc(NPf) ei'n(* Z(f)e 1 I (f -

kk({ P ' sincfk' Ze- & f-k} v f-)'

sinc(NPf) e - j r rNPf Z sinc P (f - h) e1If - 6 (f -

sine(Tf)e - rTNPf* [Z z sinep(--k) e -t k-)}

Z Ik(k  sinc NP (f -) e-JN P(fI- (F2)

Then

X, (f) = Zk z4 Z k ) Z*( j sinc NP(f - sinc NP(f -

and

(p) X A~ (f) 12 df NP Zk 12

which was to be shown.

-24-



APPENDIX G

A
In this Appendix we shall verify Eq. (25). Once a P has been chosen

as the period estimate, the waveform estimate is

I N-i
v(t) = Z z(t+nP) gj(t) (Gi)

n= 0

Letting P z po+fi, we can expand z in a Taylor series about Po.

1 N-1
wt) N n0 [z(t+nP°) + z'(t+nPO)nh +'"] gp(t)

For large signal-to-noise ratio, we can assume that nh C< 1, in which case

wi(t) 1 f N [z(t+nPo)] gp(t)
N n-O

The expectation of 'v(t) is then

= N-I
E~v(t) N 1 x(t+nPo) Egf,(t) + E[n(t+nPo) g;(t)] . (G2)

N n=O

I Now we shall evaluate each of the expectations on the right separately.

Eg(t) = f,. gpw(t)p()dP,

where p(P) is the density function of the period estimate. Unfortunately, it is
necessary to have a probability distribution for P to evaluate Egp(t). Therefore,
we shall proceed with the assumption that the noise is Gaussian. Let

A

From Eq, (13) we have that

V"(P 0 )

By our approximations V"(P 0 ) is given by Eq. (C9) and is not a function of the
noise. However, Eqs. (C8) and (C7) show V'(P 0 ) to be a linear function of the
noise. Thus 1 is (to a first approximation) a Gaussian random variable, with
zero mean and variance 2 given by Eq. (15). Then

P (P) = ' OP (P)
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where p is the Gaussian density function with mean P0 and variance o2 Then
Pl

LEpgL (t g(t) rpp 0, o p (P)dP

For any t<O, g(.) = 3.

For any t>O,
g It =1 for > t

gj,(t) 0 for P<t

Hence,
Eg(t) = tp (P)dP for tDO

O 
for t<O

Substituting x = (P-Po)/op gives

g ft' P  cp 1(x)dx for t:O

Egj,(t) cr

l0 for t<O

1 - * (tP-) for W

0 for t<O

where # is the Gaussian distribution function. This allows us to evaluate the
first term of Eq. (G2). The second term of Eq. (G2) is

E[n(t+nP o) A (0)]

which is essentially the average value of the noise over an interval P. Since the
expected value of the noise is zero, it is reasonable to expect this term to be
nearly zero. Hence

N-1

-x(t+nPO)

EWNr(t) n=O P

0 for t<O
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3. All summations are from -- to - unless otherwise indicated.

4. This method was suggested by Helstrom's treatment of a similar case.
See C. W. Helstrom, Statistical Theory of Siknal Detection, Pergamon Press,
New York (1960), p. 231.

5. It can be shown that the change in the first term with P becojLi C important
when z2(NP) exceeds the mean square value of z(t) by a factor of N2 or
more.
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